立体几何教学反思
身为一名刚到岗的教师,教学是我们的工作之一,对学到的教学技巧,我们可以记录在教学反思中,教学反思应该怎么写呢?下面是小编帮大家整理的立体几何教学反思,仅供参考,欢迎大家阅读。
立体几何教学反思1我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。
整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。
那么这节课我最满意的有以下几个地方
(1) 学生的参与
这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。
(2) 学生的创新
这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。
(3) 学生的置疑
林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的.这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.
我不满意的地方有以下几点
(1) 题量的安排
5道题虽然代表不同的类型. 但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.
(2) 课件的制作
立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.
(3) 总结时间短
这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.
以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.
立体几何教学反思2今天我们结束了必修二的第一部分内容立体几何的学习,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学习立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。
其实,任何知识的学习都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学习和感悟总能有所收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。
要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关平行和垂直的性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。
课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。
立体几何教学反思3《立体几何》是高中数学较难理解的内容之一,就其原因,主要是学生受平面思维的束缚,尚未建立起相应的空间观念,缺乏空间想象能力和逻辑思维能力所致。怎样让学生更好的学好空间几何呢?
一、抓好入门教学,准确、牢固的理解和掌握概念、定理。
1、直观形象的引入观念。
在概念教学中应在对足够的感性材料加以比对、分析和抽象的基础上从感性认识出发引进新概念。如:平面这一概念可借助平静的水面、平板玻璃的表面等这些给我们以平面形象的具体实物来引入。需注意的是,几何中的平面是在空间无限延展的,平静的水面、平板玻璃等只能看做平面的一部分。
2、借助已知概念理解新概念。
如借助直线理解平面,一条直线有两个点在一个平面内,那么这条直线上的所有点都在这个平面内。直线很直,平面必很平,直线无限延长,平面必无限延展。利用学生对直线的认识加深对平面的理解。
3、抓住要点掌握概念。
如二面角的平面角概念教学中应抓住三个要点:(1)顶点必须在棱上;(2)两边分别在两个半平面内;(3)两边必须垂直于棱,再配以相关的图形,学生对这个概念的理解就比较准确了。
4、对比联系记忆概念。
如“不同在任一平面内的两条直线”与“在不同平面内的两条直线”有着本质的差异,前者是异面直线,而后者中的.两条直线则有在同一平面内的可能。这样,对比不同的表述。找出其相异点,才能更好的理解记忆所学概念。
5、抓住定理中的关键“字词”。
如在线面垂直的判定定理中,如果一条直线垂直于一个平面内的两条“相交直线”那么线面垂直。“两条”与“垂直”缺一不可,而垂直是否过交点则不必考虑。又如在射影定理中,“从平面外一点向一个平面引垂线段和斜线段”,必须强调“从平面外一点”和“一个平面”,否则会片面得出“射影长相等时斜线也相等”的错误结论。
6、把握实质,概括精髓,加强 ……此处隐藏3727个字……看法:
①重在分析,让学生学会分析
②教师应该做好格式的示范及榜样作用
③引导学生归纳常见证明策略、方法、步骤等
④遵循由易到难原则,设置系列证明习题,强化训练,让学生积累相关的解题经验
⑤当然,几何中的三种语言规范使用是一切几何学习的前提及保证。
最后,感觉内容太多,而课时偏少,很多内容无法展开,进而学生学到的多是表面知识,无法领会知识的核心及精华,在解题中不断遭遇挫折,在挫折中逐步丧失了学习的兴趣及信心。
立体几何教学反思7本学期主要复习了立体几何,空间想象一直是学生很头痛的问题。如何把抽象难懂的立体几何变的通俗易懂是困扰老师们已久的问题。下面我谈谈自己的一点体会。
一、排除心理障碍,激发学习兴趣。很多学生认为立体几何难学,存在畏惧心理,信心不足。因此在教学中,把排除心理障碍,激发学习兴趣作为首要任务。
二、从生活中学习数学,认识图形告诉学生,数学源于生活,服务生活。大街小巷,房屋楼群到处都是数学,都是立体几何。让学生留意身边的建筑物,并想象它们的构造。日积月累,便可轻松学好立体几何。
三、利用教具、模具教具模具是实物的抽象,但比较数学化,它们应该介于生活与数学之间,是帮助学生完成抽象思维和空间想象的桥梁。又可以培养学生的观察能力。敏锐的观察能力是学好数学的重要前提。
四、层次递进,注重基本,不钻难偏由简到繁,注重基本知识和基本图形,使学生感觉有成就感,使学生都有收获。有助于增强学生的信心。
立体几何教学反思8立体几何作为主干知识之一,知识点包括:与空间结构有关的 2 个图形:直观图和三视图;与计算有关的表面积、体积、空间角和距离;与平面有关的 4 个公理和 1 个定理;与平行与垂直有关的定理。
此篇博客再就立体几何大题的考查为主,做出反思如下:
立体几何大题的考查主要集中在空间位置关系判断,体积计算,空间角和空间几何体高的计算。
文科立体几何的考查在近几年高考试题中通常设置两问,第一问,主要是空间位置判断:线线平行、线面平行、面面平行以及线线垂直、线面垂直、面面垂直的判定,这一问主要考查学生对于平行、垂直相关判定定理与性质定理的掌握,此题比较容易得分,但需要强调学生证明过程的规范性,证明过程中说理的理由要严谨,要做到有据可依且不罗嗦。 20xx 年至 20xx 年文科数学对于立体几何的考查第二问的设置在前三年都是计算几何体的体积, 20xx 年计算的是线段的长度,这和 20xx 年考试说明的变动有很大的关系, 20xx 年考试说明中最重要的改变是“简单几何体表面积和体积的计算公式要求记忆(之前一直不要求记忆表面积与体积的计算公式)”,也就是说试卷上不再印简单几何体的表面积与体积的计算公式,而当年的考试却避开了对表面积和体积公式的考查,这应该就是对考试说明变动的一种体现。而对线段长度的计算实际上是计算表面积与体积的基础,计算线段长度的重要性也可想而知。所以,对线段长度的计算应该在后期的复习中引起足够重视,要做到让学生心中有数,脑中有方法。()另外, 20xx 年的考试说明把中心投影删除,那对平行投影的理解应该会更加重要,所以对平行投影的理解应该在教学过程中加以强调。
理科立体几何的考查也多设置两问,有时也会设置三问。前两问多以证明为主,且通常会设置一个证明垂直的问题,然后利用垂直的关系建立空间直角坐标系,利用空间直角坐标系计算第三问设置的空间角。在利用空间向量计算角时,需要注意三点:一、空间点的坐标,尤其是不在坐标轴上的点的坐标。所以要要求学生多观察,有必要的话可以让学生记忆一些一些特殊位置的点的坐标的特点:如平行平面 XOY 、平面 XOZ 、平面 |YOZ 的点的坐标的特点等。二、平面的法向量是非零向量,有时在计算过程中要多观察,有些平面的法向量,可以利用与平面垂直的直线直接给出。三、向量夹角与空间角的关系。要求学生牢记异面直线直线所成的角、直线与平面所成的角、二面角与向量所成的角的关系。尤其是直线与平面所成的角的正弦等于向量的夹角余弦的绝对值。
总之,立体几何在高考中的考查以 “ 三定观点 ” 统一组织材料,一是 “ 定型 ” 考查,通过三视图、直观图来识图和用图作为空间想象能力考查的开始;二是 “ 定性 ” 考查,以判定定理和性质定理为核心判断线面位置关系进行思维发散考查;三是 “ 定量 ” 考查,以空间角、表面积、体积和高的计算进行思维聚合考查。文理试题坚持以空间想象能力立意,小题注重几何图形构图的想象和辨识,大题以垂直、平行论证为核心,空间角的计算(理科)、体积、表面积的计算(文科),强调空间想象能力在处理问题时的作用。
以上乃敝人愚见,如有不当,请斧正,不胜感激!
立体几何教学反思9立体几何是高中数学的重要部分,不断培养学生的空间思维能力、空间想象能力和严密的逻辑推理能力。在实际教学中,由于初、高中思维模式的差别巨大、平面与空间的思维跨度大及学生的学习兴趣取向没有形成等各方面的原因,造成大多学生对立体几何这一门课存在畏惧心理,普遍感到“入门难”!所以上好立体几何第一节课是至关重要的,应着重做好以下工作。
一、注重激发兴趣,渗透情感教育
充分调动学习兴趣,借用平面几何基础、生活实例、实物模型及多媒体等教学手段,充实学生对客观事物(空间图形)的感知,引导从平面向立体转化,为学生进行形象思维创造条件,促使学生建立起一定的空间想象力。上立体几何第一节课,除作了一些必要的生活铺垫,我即抛出了一个趣味思考题:六根等长木棒任意搭建,最多可得多少正三角形?让学生分组(课前准备好道具)协作构思,极大地调动了学生的参与热情和探求欲望,在学生大多得出正确结果的基础上,用多媒体展示搭建过程,后提炼出“空间中思考问题”的实质,有效地培养了学生的空间思维能力及空间想象能力。
二、注重概念的导入教学,促进空间思维的建立
立体几何是平面几何在空间的延伸,学好平面几何是学好立体几何的基础。学生掌握的平面几何概念(上位学习)对立体几何的学习(下位学习)起着重要的作用:如果上位学习对下位学习产生积极有效的促进作用,在认知心理学上称之为正迁移;如果上位学习对下位学习引起障碍及抑制作用,在认知心理学上称之为负迁移。这种正负迁移在立几概念教学中是难以避免的,甚至可说影响极大。为此在教学法中需努力地防止负迁移,促使正迁移,才能顺理成章地引导学生从平面到空间的过渡,建立正确的空间概念。
三、重概念的表述教学,促进对概念的应用与理解
在立体几何教学中,学生往往会出现:“上课听得懂,而课下题目不会做”的局面,这主要是学生不能正确、合理地使用数学语言将所学概念表达出来的缘故。
数学语言分为文字语言、符号语言、图象语言三种。学好和掌握数学语言,对于掌握概念、理解题意、准确分析推理至关重要。数学文字语言、符号语言、图形语言虽然形式各异,但它们在描述同一概念时其本质属性是相同的。因此它们之间可相互转化。